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The extensive variation in lifespan among
organisms provides a natural dataset to
probe the evolutionary tradeoffs that
constrain and mold this phenotype
across taxa.

Several key pathways repeatedly emerge
as the targets of selection from compara-
tive genomics of long-lived species.
Overall, these pathways exhibit increased
constraint in long-lived species and re-
duced constraint in short-lived species
Aging is a nearly inescapable trait among organisms yet lifespan varies tremen-
dously across different species and spans several orders of magnitude in verte-
brates alone. This vast phenotypic diversity is driven by distinct evolutionary
trajectories and tradeoffs that are reflected in patterns of diversification and
constraint in organismal genomes. Age-specific impacts of selection also shape
allele frequencies in populations, thus impacting disease susceptibility and
environment-specific mortality risk. Further, the mutational processes that spawn
this genetic diversity in both germline and somatic cells are strongly influenced by
age and life history. We discuss recent advances in our understanding of the
evolution of aging and lifespan at organismal, population, and cellular scales, and
highlight outstanding questions that remain unanswered.
with distinct signatures of diversifying
selection observed in individual taxa.

Large cohort studies demonstrate
that even late-acting deleterious alleles
appear to be under strong purifying
selection in human populations.

Somatic mutation rates scale with
lifespan and are significantly higher than
matched germline mutation rates.

Cell culture models of extreme agers are
beginning to facilitate characterization of
key genotype–phenotype interactions in
biological aging.
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Evolutionary theory of aging
Evolutionary theory predicts that aging is an inevitable result of the increased selective impact of
genes that influence early-life survival and fecundity compared with genes that act late in life [1–3].
This observation was first explicitly made by Peter Medawar, building upon R.A. Fisher's intro-
duction of the concept of age-specific reproductive value, which models the age-dependent
future genetic contributions of individuals [4]. Indeed, many of the seminal contributions to the
evolutionary theory of aging can be traced to the founders of the modern synthesis (reviewed in
[5]). Medawar's mutation accumulation theory posits that late-acting deleterious alleles are likely
to accumulate due to the reduced force of natural selection in older individuals (sometimes
referred to as a ‘selection shadow'). A similar but distinct theory of aging, antagonistic pleiotropy,
proposes that alleles that are beneficial early in life, but deleterious late in life, will accumulate. The
key difference between these two theories is that, in antagonistic pleiotropy, aging evolves due to
an evolutionary tradeoff between the fitness of old and young individuals; by contrast, in the
mutation accumulation theory aging-associated alleles are neutral in young individuals. While
the relative contributions of antagonistic pleiotropy and mutation accumulation remain unclear,
the extensive and extraordinary variation in lifespan across organisms highlights that different
evolutionary scenarios and tradeoffs can favor vastly different outcomes of this phenotype.
Medawar also noted the relative ambiguity of the term 'aging', which is used to refer to almost
any time-dependent change in a biological entity [6]. This is distinct from ‘lifespan’, which refers
to the age of death of an individual, and ‘senescence’, which refers to biological changes yielding
an increased probability of mortality as a function of age. Several technological advances and
large-scale genetic datasets have recently propelled renewed excitement about the evolution of
aging and the genetics of age-structured populations. We highlight recent progress in our under-
standing of this topic, ranging from new insights into the life histories of diverse organisms to new
approaches that enable us to identify aging genes and age-associated biological phenomena
(Figure 1, Key figure).

Insights from extreme agers of the animal kingdom
There is an extraordinary variation in lifespan across organisms on this planet which spans several
orders of magnitude in vertebrates alone [7,8]. Such variation provides an exquisite natural
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Key figure
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Figure 1. Evolutionary dynamics underlying aging and longevity. The interplay between genes, life-history traits, and environmental factors drives the evolution of aging and
lifespan. Highlighted are several of the key elements in each domain that have known associations with aging and longevity. The iconography in the center of the figure
depicts differences in lifespan (candle height) and their evolutionary relationships in Vanitas style.
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dataset in which to probe the evolution of this trait, and can provide insights into the evolutionary
tradeoffs that constrain and mold this phenotype, as well as the scenarios under which the
extremes evolve.

The life history of longevity
Evolutionary theory predicts that increased lifespan will evolve in the context of low extrinsic
mortality, in other words when few environmental threats pose a risk of death. By contrast,
short lifespans will evolve in organisms with high extrinsic mortality (e.g., due to predation).
Lifespan, as well as many other life-history traits, tends to exhibit strong allometric scaling,
where larger animals are longer-lived. However, even after controlling for body size and phyloge-
netic relatedness, lifespan exhibits covariation with other life-history traits, with the majority of this
variance explainable across two independent axes [9,10]. Generation time and age-at-first
reproduction covary with lifespan along one axis, while the distribution of age-specific mortality
and reproduction covary along the other. Thus, short-lived species tend to be smaller and have
shorter generation and maturation times. They also have high rates of iteroparity, many offspring,
and a highly concentrated mortality risk (e.g., low juvenile survival). Importantly, these life-history
correlations mean that extreme lifespan can emerge from indirect selection on a covarying trait.

The relationship between age and mortality is commonly modeled using the Gompertz hazard
function (Box 1). This simple empirical model describes the exponential increase in mortality
rate with age. Although the increased probability of mortality with age has been considered to
be a universal trait among organisms, recent comparative studies of tortoises [11], and non-
avian reptiles and amphibians [9,12], have identified several cases in which the rates of aging
are negligibly small, or even negative. Other species that have been suggested to exhibit so-
called 'negligible senescence' include rockfish [13] and naked mole rats [14]. Many of these
species, in particular fish and some reptiles and amphibians, exhibit 'indeterminate' growth and
fecundity, thus providing a key clue into the basis of their remarkable longevity: the continual
growth and production of offspring throughout lifespan places a strong selective cost on late-
acting deleterious mutations. In addition, in rockfish and many other fishes, fecundity scales
disproportionately with body size [15], meaning that larger, older, females will contribute more off-
spring to the next generation than younger, smaller individuals. Several other correlates of lifespan
have been identified including metabolic rate [16,17], temperature and thermoregulatory mode
[12], protective phenotypes (e.g., toxins, shells, flight) [18], and sex. Thus, extreme lifespan
evolves across many different phenotypic axes.

Death and sex (chromosomes)
Extensive sex differences in lifespan are apparent acrossmany taxa (reviewed in [19]). Intriguingly,
the direction of this effect consistently favors the homogametic sex (i.e., females in XY systems
such as in mammals, and males in ZW systems such as in birds). Indeed, a recent comparison
of 299 species found that the homogametic sex lived, on average, 17.6% longer than the hetero-
gametic sex [20], and in-depth analyses of mammals [21] and amphibians [22] have shown similar
results. One explanation of this phenomenon, the 'unguarded X hypothesis', posits that recessive
mutations on the X (or Z) chromosomes will be exposed only in the heterogametic context. How-
ever, population genetic models have suggested that the effect size of the difference in lifespan
between the hetero- and homogametic sexes is too large to be explained by the unmasking of
recessive variation alone [23]. An alternative explanation is that the Y (or Z) chromosome itself
becomes toxic with age, due to the derepression and misexpression of repetitive DNA. This
hypothesis is supported by recent work in Drosophila demonstrating that increased Y chromo-
some copy number correlates negatively with lifespan [24]. Further bioinformatic analyses across
several taxa provide further support for this hypothesis and find that the relative sizes of the X and
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Box 1. Modeling mortality

The lifespan of organisms is commonly modeled using the Gompertz–Makeham equation which takes the form of the
hazard function (Equation I).

m tð Þ ¼ A0eGt þM0 ½I�

where m(t), the mortality hazard, represents the instantaneous probability of death at time t and m(t)dt is the fraction of the
population that dies from t to t + dt. This equation states that the probability of mortality of an organism can be modeled by
an age-dependent component that increases exponentially with age (the Gompertzian component) and an age-independent
component (the Makeham component). The parameter G reflects the exponential mortality rate coefficient, or 'rate of aging'.
A0 is a constant representing the intrinsic vulnerability or initial mortality rate (IMR), whereasM0 is the age-independent mortality
rate or extrinsic mortality rate (EMR). Due to the challenge in distinguishing the IMR from the EMR, a simplified Gompertz
equation is often used to model mortality in which theM0 term is dropped. The survival function S(t) (Equation II), which repre-
sents the probability of an individual surviving until time t, can be derived from the hazard function and takes the form:

S tð Þ ¼ exp
A0

G
1−eGt
� �� �

½II�

More complex mortality functions, such as the Siler model [105], allow mortality to vary more flexibly throughout lifespan,
and explicitly quantify the increased mortality in infants and post-reproductive adults. Figure I shows mortality and survival
curves for several different species, including long-lived humans and ultra long-lived rockfish, as well as a turtle and lizard
that exhibit 'negative senescence'.

TrendsTrends inin GeneticsGenetics

Figure I. Mortality hazard (instantaneous probability of death) and survival curves for six diverse species.
Mortality hazard lines become broken after the maximum lifespan of the species.
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Y chromosomes in mammals (although not Z or W in birds) are associated with lifespan [25].
Heterochromatin becomes derepressed with age in several species; however, the Y chromo-
some is particularly rich in heterochromatin-repressed repetitive sequences. Such repetitive,
heterochromatic sequences have classically been challenging to interrogate due to the limitations
of sequencing technologies. The advent of several new long-read sequencing approaches will
hopefully open these regions to study across species with different lifespans as well as through-
out the lifespans of individual organisms.

Comparative genomics of extreme aging
While classical model organisms including yeast, worms, flies, and mice have provided myriad
insights into the molecular underpinnings of lifespan variation, novel long-read sequencing and
genome-assembly approaches are empowering comparative genomics-based interrogation of
long-lived wild species across the planet that would be otherwise be intractable to study in the
laboratory (Box 2).
Trends in Genetics, November 2023, Vol. 39, No. 11 833
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Box 2. The evolution of comparative genomics

Long-read sequencing technologies have dramatically reshaped modern approaches to evolutionary genomics. Over the
past decade the rapid improvement of nanopore and PacBio sequencing technologies has enabled remarkable advances
in genome assembly. These technologies also allow us to access notoriously challenging regions of the genome, including
segmental duplications, telomeres, centromeres, and other repeat-rich regions which can span many megabases. Short-
read assemblies, by contrast, are remarkably fragmented, frustrating analyses. Long-read approaches obviate these
difficulties by directly sequencing single molecules of high molecular weight DNA up to many megabases in length, thus
permitting coverage across the aforementioned regions. Complete reference-quality genomes have historically only been
available for a handful of species (e.g., human and mouse) and were the result of massive-scale consortia efforts. By
contrast, long-read sequencing alongside recent improvements in genome assembly allows individual laboratories to con-
tribute near-complete genomes. Complete genomes from diverse species enable analysis of previously uncharacterized
coding and noncoding sequences. The many structural rearrangements present in genomes can also be assessed for
the first time: linking genome structural variants to phenotypes has remained relatively unexplored due to technological
shortcomings in short-read assembly. Ultimately, comprehensive comparative genomics across the tree of life requires
so-called telomere-to-telomere assemblies which are gapless, covering even the most structurally challenging loci.
Nevertheless, currently comparative genomics relies on genomes assembled to varying levels of completion which are
suited for different comparative genomics analyses (Table I).

Table I. A brief overview of reference genome resources for comparative and evolutionary genomics

Assembly type Strengths Recent resources

Short-read genomes Resequencing, population genetics, initial
characterizations of genome diversity

Zoonomia [106], Primate Genome
Project [107]

Long-read genomes Near-complete analyses of autosomal gene
content and diversity, characterization of structural
variation, near-complete haplotype assembly, initial
characterizations of complex loci (see later)

Vertebrate Genome Project [48];
Human Pangenome Reference
Consortium [108]

T2T genomes Complete analyses of autosomal and sex
chromosome gene content; full characterization of
complex regions including segmental duplications,
centromeres, telomeres, and rDNA repeats

T2T Consortium [82]
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Insights from genome assemblies
The complete genomes of several extremely long-lived non-model species have been generated
recently, including the bowhead whale (Balaena mysticetus, >200 years) [26], the giant tortoises
Chelonoidis abingdonii and Aldabrachelys gigantea (>100 years) [27,28], Asian and African
elephants (Loxodonta africana and Elephas maximus, >80 and >65 years respectively) [28],
naked mole rats (Heterocephalus glaber, >35 years) [29], the Canadian beaver (Castor
canadensis, >23 years) [29], several long-lived rockfish of the Sebastes clade (100–200 years)
[13], the ‘immortal’ cnidarian jellyfish (Turriitopsis dohrnii) [30], and various bats [31]. Substantially
less attention has been paid to the genomes of wild, short-lived species, with the critical excep-
tion of the short-lived African turquoise killifish (Nothobranchius furzeri, 4–6months) [32,33] which
has emerged as a key model organism of aging and suspended animation [34]. Individual analy-
ses of the genomes of these diverse species have repeatedly highlighted signatures of selection in
key aging pathways, including insulin signaling, fatty acid metabolism, DNA repair, inflammation,
cell-cycle, and tumor-suppression pathways, among others (pathways reviewed in [35–37]). In
long-lived species these pathways often exhibit signatures of positive selection [13,29,38], high-
lighting the evolutionary innovations necessary for extreme lifespan. Intriguingly, in short-lived kil-
lifish the evidence indicates that these critical age-associated pathways are under relaxed
constraint [32,33] due to the reduced selective pressure on later-acting genes with roles in main-
tenance and longevity.

Such signatures are also observed in structural and copy-number changes in the genome.
Bowhead whales exhibit duplications in genes associated with DNA damage repair and cancer
[26], rockfish exhibit age-associated copy-number expansion of butyrophilin genes which serve
834 Trends in Genetics, November 2023, Vol. 39, No. 11
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an immunosuppresive function [13], immortal cnidarian jellyfish exhibit expansions in genes
associated with DNA repair and replication, telomere maintenance, oxidative stress, stem cell
maintenance, and intercellular communication [30], and bats exhibit an expanded repertoire of
APOBEC3 genes which have antiviral functions and have known mutational signatures
[31,39,40]. By contrast, short-lived annual killifish exhibit increased genome sizes attributed
to increased mobile element content, potentially facilitated by relaxed selection on genome
maintenance in these species [33].

Insights from genome ensembles
While studies of individual genomes have been highly informative, methods leveraging compara-
tive analyses of phylogenetically diverse taxa with broad variation in a phenotype of interest can
also yield unique insights. Broadly speaking, such methods seek to identify correlations between
the rate of evolution of a gene or region with the phenotype of interest across taxa. This approach
has been successfully used to quantify genetic constraint associated with extended lifespan
across the entire mammalian clade [38], longevity among different rockfish species [13,41], and
differences in the constraint of both genes and noncoding regions associated with several
different phenotypes in other mammals [42–44]. These approaches have highlighted that, overall,
long-lived species tend to exhibit signatures of increased constraint in many key aging pathways
including DNA repair, cell cycle, cell death, insulin signaling, and immunity [38]. By contrast, short-
lived killifish populations exhibit small effective population sizes and the accumulation of deleteri-
ous mutations in similar pathways [45]. Taken together with insights from individual genomes, it
emerges that, in general, key aging pathways are under strong purifying selection in long-lived
taxa, and independent distinct innovations are observed in select genes in individual species.
This is well illustrated in rockfish where several long-lived species exhibit signatures of positive
selection in DNA repair genes; however, different positively selected genes are found in different
species [13]. In rockfish these approaches have also been used to dissect apart the direct genetic
drivers of extreme lifespan (largely associated with nutrient signaling) from the indirect genetic
drivers which act to increase lifespan by increasing body size (associated with DNA repair and
mTOR signaling-associated genes).

Despite the power of these comparative approaches, they still have some drawbacks, such as a
reliance on large multiple sequence alignments (MSAs). While advances have been made in this
area [46], whole-genome MSAs are still extremely computationally expensive to generate.
Furthermore, genetic variation that is not well described by MSAs, such as structural variation
(SV), will be ignored. Another important caveat is that poor-quality input genomes will likely lead
to unreliable inferences and exclude complex and rapidly evolving loci (Box 2). While recent efforts
have prioritized broad taxonomic sampling over genome quality [47], future projects such as the
Vertebrate Genome Project [48] are focused on constructing high-quality resources which will be
of substantial value for comparative genomics of extreme phenotypes.

Insights from functional genomics
Functionally characterizing the genes and pathways identified from comparative genomics studies
is essential to fully dissect the mechanistic underpinnings of differences in lifespan. However, a
primary challenge to such work is the intractability of exploring molecular mechanisms in non-
model, long-lived organisms (Box 3). Nonetheless, several studies have leveraged cell culture
models to explore hypotheses from comparative genomics studies. Work in elephants and
their large-bodied relatives (Proboscideans) has identified gene duplications in several tumor-
suppressor genes [49–52]; two of these genes, LIF6 and TP53-RETROGENE9, represent func-
tional retrogenes that can induce apoptosis upon expression [49,52]. By contrast, similar work in
the long-lived bowhead whale has demonstrated a preference for repair mechanisms over the
Trends in Genetics, November 2023, Vol. 39, No. 11 835
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Box 3. Aging in a dish

While the ultimate tests of aging-related hypotheses and treatment are in vivo, longitudinal studies of putative life- or
healthspan extensions are costly and complex, if not impossible in exceptionally long-lived taxa. Cell culture models have
long served as a bridge between the trials of research and the tribulations of clinical trials, but it is crucial that appropriate
models are utilized to avoid wasted effort.

Many processes operating in aging are tissue-specific and non-cell-autonomous. Although any cell type can be used in
principle for initial exploration of candidate genes and pathways, robust characterization of aging-associated genes and
interventions requires more faithful experimental systems. Organoid models and organism-on-a-chip studies have been
proposed as a means to resolve this in humans [109]. These approaches involve either ex vivo culturing of organ tissues
under controlled conditions or the establishment of organoids derived from induced pluripotent stem cells (iPSCs).
Compared with in vivo studies, ex vivo organoid systems provide an unmatched increase in experimental tractability
and a level of control of extrinsic confounding factors.

Because these approaches require invasive and possibly lethal sampling of target species, an alternative approach is to
construct organoid models de novo using stem cell-based approaches. Specifically, iPSCs promise a robust system for
generating any tissue of interest with minimal nonlethal sampling of individual animals. Both a key strength and limitation
of iPSC-based approaches is that epigenetic changes associated with aging are lost during the reprogramming process
[110,111]. The generation of iPSCs, however, remains challenging outside key model species such as humans and mice.
Although there are many methods to transform cells into iPSCs, many rely upon or can result in alterations to the genome
or to the fundamental cellular biology of the species, and special care must be taken to ensure that the resulting iPSCs
replicate the true biology of their original host.

Table I highlights a selection of some of the ongoing work in different long-lived clades of interest using cell culture models,
and the progress that has been made towards improving the state-of-the-art of ex vivo aging research.

Table I. Select studies leveraging cell culture or organoid models in long-lived clades of interesta

Species Cell types iPSC protocols Organoids

Human Various Various Various (iPSCs, ex vivo); (e.g., [112])

Non-human
primate

Various Various [113–116] Various (iPSCs, ex vivo); (e.g., [117])

Mouse Various Various Various (iPSCs, ex vivo); (e.g., [117])

Naked mole
rat

Fibroblasts (various
tissues) [55,118–121]

Integrative plasmid; viral
transduction [122–125]

Aorta (ex vivo) [117,126]

Elephant Fibroblasts [49,51] N/A N/A

Whale Fibroblasts
[53,54,127–129]

N/A N/A

Fish and
sharks

Various [130,131] Viral transformation [132] Retina (iPSCs) [133,134]

Turtles Fibroblasts (various
tissues) [135–137]

N/A Liver [138]

Bats Fibroblasts (skin,
kidney) [139–143]

Integrative plasmid [144,145];
viral transformation [146]

Trachea (ex vivo) [147], intestines
(ex vivo) [148,149]

aAbbreviation: N/A, not applicable.
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elimination of damaged cells. This includes work demonstrating the effectiveness of a cloned
retrogene of the cell-cycle regulator CDKN2C that serves to enhance cell-cycle arrest and
cell viability in response to DNA damage [53], and additional work in bowhead whale cells
demonstrating an enhanced DNA damage repair response [54]. Work in long-lived rodents
has shown a spectrum of responses to various aging-related stresses, many of which are
private to each species [55–58]. These studies highlight the exciting possibilities of using cellu-
lar models of diverse and intractable species to understand even highly complex phenotypes
such as body size and aging (Box 3).
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Population genetics of aging
The age-specific impacts of selection
Increasingly large-scale cohort studies such as the UK Biobank [59] and the All of Us Research
Program [60] present new opportunities to study human aging from a population genetics
perspective. Trends in allele frequencies across age strata have the potential to reveal longitudinal
dynamics of variant effects. In humans, both mutation accumulation and antagonistic pleiotropy
have been postulated as explanations for the presence of segregating disease-causing alleles.
However, studies of the genome-wide association studies (GWAS) catalog [60] purporting to
have identified evidence of this [61] have suffered from statistical and logical flaws [62]. Taking ad-
vantage of GWAS data from more than 175 000 participants, Mostafavi et al. identified only a
handful of common variants with strong impacts on age-specific mortality [63]. These variants
were found at the APOE ε4 and CHRNA3 loci, which predispose to Alzheimer's disease and
smoking behavior respectively. These results highlight the strong impact of purifying selection
to purge deleterious alleles, even if they act later in life.

Epidemiological studies have documented an association between reproductive traits, such as
age at onset of puberty or first childbirth, and female lifespan [64,65]. By calculating polygenic
prediction scores for these traits, Mostafavi et al. were able to show that genetic variants that
delay puberty and increase age at first birth in mothers are associated with increased lifespan.
By contrast, polygenically predicted increases in body mass index (BMI), cholesterol, and
coronary artery disease risk are associated with decreased lifespan.

The observation in humans that purifying selection strongly influences late-acting disease-
causing alleles is intriguing given that these alleles should exert their effect well after menopause
and peak reproductive ages in women. Indeed, for many late-onset diseases, causal variants
tend to be evolutionarily recent and segregate at low frequencies. In an attempt to reconcile
these observations with theory, Pavard and Coste [66] developed an evolutionary demographic
model that accounted for male fertility extending into old age, and the role of familial care by
parents or grandparents. This model predicted that variants that cause disease later in life are
indeed expected to be under strong purifying selection in many cases due to the impact of
post-menopausal parental and grandparental care.

The many complexities inherent to dissecting the evolution and genetics of lifespan have also
been highlighted in attempts to estimate the heritability of this trait. While estimates as high as
30% have been reported [67], recent analyses have suggested that these estimates are substan-
tially inflated as a result of assortative mating, and the true heritability is likely <10% [68]. Indeed,
some of the strongest predictors of lifespan are geographic and environmental in na-
ture [69,70]. Together, these data highlight the clear importance of sociocultural and
environmental factors in influencing human lifespan.

Interactions between genes and the environment (G×E) also almost certainly play an important
role, although these are exceptionally hard to dissect in humans. A recent study in Drosophila
identified alleles associated with lifespan under dietary stress (high sugar versus control)
[71]. Remarkably, one third of alleles mediated an environment-specific (G×E) effect on
shortening lifespan. These alleles were evolutionary younger and exhibited signatures of
selection in the wild. These results provide support for the 'evolutionary mismatch hypothe-
sis', namely that differences between ancient and modern environments contribute to dis-
ease [72]. Humans notably have undergone massive dietary changes over the past several
thousand years that accompanied the Neolithic transition from hunter-gatherer to agricultural
sustenance.
Trends in Genetics, November 2023, Vol. 39, No. 11 837
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Although many late-acting disease-causing genes appear to be under strong purifying selection,
genes expressed in old age generally tend to exhibit signatures of relaxed selection compared
with genes expressed early in life. Analyses of gene expression across several mammals and
insects have found that the rate of nonsynonymous substitution (dn/ds) is significantly higher in
genes expressed later in life [73–75]. Late-expressed genes also exhibit more segregating
nonsynonymous substitutions and have a reduced effective strength of selection (Nes). Similar
signatures have been identified in killifish, where genes expressed early in life recapitulate
stringencies in selection [33]. To explore these patterns more broadly in human populations,
Yamamoto et al. developed a statistical model to quantify the proportion of variance in gene
expression that is attributable to age or genetics in 948 humans across 27 different tissues
[76]. Intriguingly, while the force of purifying selection was indeed stronger on genes expressed
earlier in life for the majority of tissues, recapitulating work in other species, several highly prolifera-
tive tissues exhibited the opposite trend. These 'non-Medawarian' tissues displayed high rates of
cancer and age-of-expression associated somatic mutation. The genes responsible for driving this
signature were highly enriched for pathways associated with DNA repair, cellular proliferation,
differentiation, and cancer. One explanation for these signatures is that these genes are highly
pleiotropic, and play critical roles both in early development and later in life in these specific 'non-
Medawarian' tissues.

Mutation: cause and/or consequence of aging and death
The aging germline
Mutation is the fundamental source of genetic variation. Observations of an association of
advanced paternal age with achondroplasia provided some of the first clues that the germline
mutation rate increases with age [77]. Recent advances in sequencing methodologies have
allowed us to directly quantify this mutation rate across a multitude of organisms and thus link
aging and several other life-history traits to this key biological trait.

Some of the most in-depth analyses of the impact of age on mutation rate have been performed
in humans. A landmark study of 1548 pedigrees showed that the paternal mutation rate increases
with age at a rate approximately fourfold higher than the maternal rate (1.51 versus 0.37 muta-
tions per year) [78]. The types of de novo mutations from sperm and eggs also differed signifi-
cantly, and several egg-specific mutation hotspots were observed. Intriguingly, analyses of
almost 10 000 individuals from multiple single-generation families both with and without autism
spectrum disorder (ASD) did not find any age association with the rate of SV formation [79], al-
though SVs were observed at a significantly higher rate in ASD probands and were more likely
to be paternal in origin. These results are consistent with recent analyses of macaque parent/off-
spring trios which also failed to identify any association of SV formation with age [80]. However,
these observations are at odds with analyses highlighting significant age-associated increases
in instability and fragmentation in sperm [81]. Future studies and new sequencing technologies
will be necessary to reconcile the differences in mutations identified between family studies and
direct observation of gametes. In particular, de novo SVs are extremely challenging to identify
using short-read sequencing. Long-read based approaches, including those leveraging new
telomere-to-telomere assemblies [82], may provide more sensitivity in detecting de novo events
(Box 2).

Germline mutation rates also vary substantially between species, reflecting differences in life
history and reproductive strategies. A recent hallmark study of 151 trios from different mammals,
fish, birds, and reptiles identified an average germline mutation rate of 1.17 × 10−8 across
vertebrates, and that higher mutation rates were driven primarily by greater parental age at
reproduction [83]. However, per-generation mutation rates varied by up to 40-fold between
838 Trends in Genetics, November 2023, Vol. 39, No. 11
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different species. A paternal bias in the mutation rate was observed for mammals and birds, but
not for reptiles and fishes. Age at maturity and generation time were both positively associated
with increasedmutation rates, and in mammals the number of offspring per generation correlated
negatively with mutation rate. The mutational spectrum also differed substantially between verte-
brate classes. The largest differences were A>C and C>Amutations in fish. Changes in life history
can have strong effects on germline mutation rates and profiles. One extreme example is in
domesticated animals which have been selected for short generation times, resulting in excep-
tionally high per-year mutation rates [83]. In rockfish, species with increased lifespans exhibit
more segregating CpG>TpG mutations [13]. This mutational signature is characteristic of spon-
taneous deamination of methylated cytosines, highlighting that shifts in the average generation
time of a population can influence the spectrum of segregating genetic variation. Extensive com-
parisons of the rate and spectrum of de novo SVs between species have not yet been performed.
However, together these results highlight the close relationship between the evolution of mutation
rates and the evolution of aging.

Somatic mutation
Somatic mutations accumulate with age in cells throughout the body. Indeed, this accumulation of
somatic mutation is considered to be a 'hallmark' of aging [84], although it is not clear to what
degree such mutations are a cause' of aging. Somatic mutations are difficult to measure due
to their low frequency and the challenge of distinguishing them from artifactual sequencing errors.
Newly developed single-molecule sequencing techniques, such asNano-seq (duplex sequencing),
enable highly accurate somatic mutation calls and to establish somatic mutation rates [85].
Somatic mutation rates tend to exceed their matched germline rates by 1–2 orders of magnitude
[86–88]; however, they differ between tissues and cell types [89,90]. This increased somatic
mutation rate is consistent with the disposable soma theory which posits that organisms face a
resource tradeoff in their investment in germline versus somatic repair [91].

While the vast majority of work on somatic mutations has focused on humans, a recent analysis of
intestinal crypts from 16 mammalian species has provided several key insights into the evolution
of somatic mutation [87]. Endogenous mutational processes were found to dominate the
observed mutations, as opposed to environmentally associated mutations, although this trend
may differ between cell types and tissues. Across mammals, the mutational signatures observed
were largely the same, mirroring results in de novo germline mutations which only found
differences in the mutational spectrum between vertebrate classes. Most strikingly, the somatic
mutation rate showed an inverse relationship with lifespan, with 82% of interspecies variation ex-
plained by this trait. Variation in body size was surprisingly not associated with somatic mutation
rate. Moreover, the end-of-lifespan burden across species varied by only threefold regardless of
lifespan, supporting the theory that somatic mutation accumulation may be a key contributing
factor to lifespan. Together these findings suggest that, at least in some cell types, somatic mu-
tation burden represents a highly accurate estimator of absolute age across species.

Cancer is caused by somatic mutations that activate uncontrolled cell proliferation [92], with
cancer risk varying between cell types. Thus, if every cell possesses some intrinsic risk of tumor-
igenesis, it follows that larger organisms with a greater number of cells should be at a greater risk
of developing cancer [93]. This is indeed the case within species: in humans, for example, the risk
of many different cancer types increases with height [94]. Likewise in dogs, larger breeds have a
higher cancer incidence [95]. However, there is no apparent correlation between lifespan, body
size, and cancer risk between species [96], a phenomenon referred to as Peto's paradox [97].
Organisms with longer lifespans should have a similarly increased risk of cancer as a conse-
quence of increased mutation burden.
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Outstanding questions
Gene-by-environment (G×E) interactions
play an extremely important role in
influencing lifespan and other life-history
traits. However, identifying G×E interac-
tions is challenging even in model or-
ganisms, and remains underexplored
in humans. A major outstanding chal-
lenge is the development of both study
designs and statistical approaches
that are empowered to identify G×E in-
teractions in large human cohorts and
to elucidate the impacts of these inter-
actions on human health and lifespan.

The covariance of lifespan with several
other life-history traits implies that
shared genetic pathways shape the
biology of aging. Many of these path-
ways are extremely deeply conserved
and essential. While these pathways
are discovered repeatedly by compara-
tive genomics studies, disentangling
the many pleiotropic and epistatic ef-
fects of perturbations in these pathways
remains extremely challenging.

Long-read sequencing is unveiling the
extensive structural differences that
exist within and between species in pre-
viously intractable regions such as
centromeres, telomeres, and ribosomal
(r)DNA repeats, as well as large SVs
such as inversions and translocations.
However, current comparative geno-
mics approaches based onmultiple se-
quence alignments are not empowered
to assess this variation. An outstanding
question concerns how these structural
rearrangements influence phenotypes.
Answering this question will require
novel computational and statistical
comparative approaches in addition to
high-quality genomic and phenotypic
data.

Heterochromatic repeat sequences
on sex chromosomes have been
implicated in aging, but the longitudinal
dynamics of their derepression in
different species and their mechanism
of toxicity are not well understood.

While recent work highlights the tight
linkage between the evolution of lifespan
and both germline and somatic single-
nucleotide mutation patterns, our under-
standing of age-associated somatic and
germline SV remains incomplete.
A recent study of 110 148 captive individuals across 191 mammalian species did identify
a dramatic range in cancer mortality risk (CMR; i.e., the likelihood of dying from cancer)
among species [98]. Over 20% of species examined exhibited substantial risk (exceeding
10% CMR) of cancer-related death [98]. However, body mass and lifespan accounted for
only 0.78% and 2.94% of cross-species variance in CMR respectively, robustly supporting
Peto's paradox in mammals. This line of evidence, taken alongside findings of an inverse rela-
tionship between lifespan and somatic mutation rate, supports life history-dependent evolution
of cancer mitigation. However, the genetic drivers underpinning increased cancer resistance in
larger organisms are still largely unresolved, and recent evidence suggests a plurality of
mechanisms (Box 3).

Concluding remarks and future perspectives
The scope of the field of aging and evolution is extraordinarily broad, and encompasses
a myriad of topics beyond those we have covered, including epigenetic modifications
[99–101], telomere attrition [102], and other hallmarks of aging [84]. We also choose here
to focus primarily on vertebrates, although many of the molecular mechanisms underlying
aging are conserved in invertebrate and even in plant models, as described in other reviews
[103,104].

Differences in lifespan have evolved countless times throughout the tree of life. Longer and shorter
lifespans covary strongly with several distinct phenotypes and environmental conditions. This
means that extreme lifespans can emerge indirectly from selection on covarying traits or
adaptations to new environments, signatures of which will be left in their genomes. Dissecting
the functional impact of selected genes and pathways remains challenging; however, cellular
and organoid models have emerged as potentially transformative tools to explore these
lifespan-extending adaptations.

The age-specific forces of selection are now for the first time being revealed in humans demon-
strating that strongly deleterious alleles, even when late-acting, exhibit signatures of purifying se-
lection. However, in general, genes expressed earlier in life exhibit increased constraint compared
with those expressed late in life, except in the case of a handful of highly proliferative 'non-
Medawarian' tissues. However, the cell type-specific patterning of expression timing and con-
straint remains to be explored. Such studies have the potential to reveal 'Medawarian' and
'non-Medawarian' patterns in individual cell types. Future profiling of cellular phenotypes through-
out lifespan will also allow individual cellular phenomena to be linked to organism-level pheno-
types and evolutionary patterns.

The evolution of aging and lifespan is tightly linked to the evolution of mutation rates and
processes. While rapid advances have been observed in dissecting single-nucleotide mutations,
our understanding of both germline and somatic SV remains incomplete. As somatic mutation
profiling approaches become more cost-effective, future studies also have the potential to
increase our understanding of cellular aging across taxa. These studies will hopefully provide
further insights into the lifespan-associated pathways identified by comparative genomics studies
and clarify their cell type-specific actions.

The proliferation of several genomic technologies has propelled our understanding of the evolu-
tion of aging enormously. However, many of these technologies have only recently started to
be applied at scale to explore fundamental questions of evolutionary biology. The future (see
Outstanding questions) thus holds unprecedented promise as we begin to explore the full extent
of organismal diversity to uncover the many different origins of life-history differences on Earth.
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