Somatic Mutations in Bats

DNA damage repair is a trait that is strongly associated with longevity across mammals; since mutations introduced by DNA damage and low-fidelity repair can cause cancer, avoiding mutations - and thus, avoiding cancer - is a requirement for a long, healthy life. In 2022, Cagan et al. directly demonstrated that lifespan is inversely related to somatic mutation frequency across terrestrial mammals - however, there were no bats in this study. As the longest-lived group of mammals, and one of the most diverse clades in terms of lifespan and other life history traits, there is an opportunity to understand how rates and patterns of somatic mutations have evolved using this group.

Related Papers

  1. Cagan, A., Baez-Ortega, A., Brzozowska, N., Abascal, F., Coorens, T. H. H., Sanders, M. A., Lawson, A. R. J., Harvey, L. M. R., Bhosle, S., Jones, D., Alcantara, R. E., Butler, T. M., Hooks, Y., Roberts, K., Anderson, E., Lunn, S., Flach, E., Spiro, S., Januszczak, I., … Martincorena, I. (2022). Somatic Mutation Rates Scale with Lifespan across Mammals. Nature, 604(7906), 517–524. https://doi.org/10.1038/s41586-022-04618-z
  2. Abascal, F., Harvey, L. M. R., Mitchell, E., Lawson, A. R. J., Lensing, S. V., Ellis, P., Russell, A. J. C., Alcantara, R. E., Baez-Ortega, A., Wang, Y., Kwa, E. J., Lee-Six, H., Cagan, A., Coorens, T. H. H., Chapman, M. S., Olafsson, S., Leonard, S., Jones, D., Machado, H. E., … Martincorena, I. (2021). Somatic Mutation Landscapes at Single-Molecule Resolution. Nature, 593(7859), 405–410. https://doi.org/10.1038/s41586-021-03477-4
  3. Caulin, A. F., Graham, T. A., Wang, L.-S., & Maley, C. C. (2015). Solutions to Peto’s paradox revealed by mathematical modelling and cross-species cancer gene analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1673), 20140222. https://doi.org/10.1098/rstb.2014.0222
  4. Compton, Z. T., Mellon, W., Harris, V. K., Rupp, S., Mallo, D., Kapsetaki, S. E., Wilmot, M., Kennington, R., Noble, K., Baciu, C., Ramirez, L. N., Peraza, A., Martins, B., Sudhakar, S., Aksoy, S., Furukawa, G., Vincze, O., Giraudeau, M., Duke, E. G., … Boddy, A. M. (2024). Cancer prevalence across vertebrates. Cancer Discovery, OF1–OF18. https://doi.org/10.1158/2159-8290.CD-24-0573
  5. Conde-Pérezprina, J. C., Luna-López, A., González-Puertos, V. Y., Zenteno-Savín, T., León-Galván, M. A., & Königsberg, M. (2012). DNA MMR Systems, Microsatellite Instability and Antioxidant Activity Variations in Two Species of Wild Bats: Myotis Velifer and Desmodus Rotundus, as Possible Factors Associated with Longevity. Age, 34(6), 1473–1492. https://doi.org/10.1007/s11357-012-9399-5
  6. Foley, N. M., Hughes, G. M., Huang, Z., Clarke, M., Jebb, D., Whelan, C. V., Petit, E. J., Touzalin, F., Farcy, O., Jones, G., Ransome, R. D., Kacprzyk, J., O’Connell, M. J., Kerth, G., Rebelo, H., Rodrigues, L., Puechmaille, S. J., & Teeling, E. C. (2018). Growing Old, yet Staying Young: The Role of Telomeres in Bats’ Exceptional Longevity. Sci Adv, 4(2), eaao0926. https://doi.org/10.1126/sciadv.aao0926
  7. Francis, A. A., Lee, W. H., & Regan, J. D. (1981). The Relationship of DNA Excision Repair of Ultraviolet-Induced Lesions to the Maximum Life Span of Mammals. Mechanisms of Ageing and Development, 16(2), 181–189. https://doi.org/10.1016/0047-6374(81)90094-4
  8. Liu, M. H., Costa, B. M., Bianchini, E. C., Choi, U., Bandler, R. C., Lassen, E., Grońska-Pęski, M., Schwing, A., Murphy, Z. R., Rosenkjær, D., Picciotto, S., Bianchi, V., Stengs, L., Edwards, M., Nunes, N. M., Loh, C. A., Truong, T. K., Brand, R. E., Pastinen, T., … Evrony, G. D. (2024). DNA mismatch and damage patterns revealed by single-molecule sequencing. Nature, 630(8017), 752–761. https://doi.org/10.1038/s41586-024-07532-8
  9. MacRae, S. L., Croken, M. M., Calder, R. B., Aliper, A., Milholland, B., White, R. R., Zhavoronkov, A., Gladyshev, V. N., Seluanov, A., Gorbunova, V., Zhang, Z. D., & Vijg, J. (2015). DNA Repair in Species with Extreme Lifespan Differences. Aging, 7(12), 1171–1184. https://doi.org/10.18632/aging.100866
  10. Morley, A. A. (1995). The Somatic Mutation Theory of Ageing. Mutation Research/DNAging, 338(1), 19–23. https://doi.org/10.1016/0921-8734(95)00007-S
  11. Schumacher, B., Pothof, J., Vijg, J., & Hoeijmakers, J. H. J. (2021). The central role of DNA damage in the ageing process. Nature, 592(7856), 695–703. https://doi.org/10.1038/s41586-021-03307-7
  12. Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., Boutselakis, H., Cole, C. G., Creatore, C., Dawson, E., Fish, P., Harsha, B., Hathaway, C., Jupe, S. C., Kok, C. Y., Noble, K., Ponting, L., Ramshaw, C. C., Rye, C. E., … Forbes, S. A. (2019). COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research, 47(D1), D941–D947. https://doi.org/10.1093/nar/gky1015
  13. Vazquez, J. M., Sulak, M., Chigurupati, S., & Lynch, V. J. (2018). A zombie LIF gene in elephants is upregulated by TP53 to induce apoptosis in response to DNA damage. Cell Reports, 24(7), 1765–1776. https://doi.org/10.1016/j.celrep.2018.07.042
Juan Manuel "Manny" Vazquez
Juan Manuel "Manny" Vazquez
Incoming Assistant Professor